Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Operando NMR methods for redox flow batteries and ammonia synthesis

Magnetic resonance methods, including nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), are non-invasive, atom-specific, quantitative, and capable of probing liquid and solid-state samples. These features make magnetic resonance ideal tools for operando measurement of an electrochemical device, and for establishing structure-function relationships under realistic condition.

The first part of the talk presents how coupled inline NMR and EPR methods were developed and applied to unravel rich electrochemistry in organic molecule-based redox flow batteries. Case studies performed on low-cost and compact bench-top systems are reviewed, demonstrating that a bench-top NMR has sufficient spectral and temporal resolution for studying degradation reaction mechanisms, monitoring the state of charge, and crossover phenomena in a working RFB. The second part of the talk presents new in situ NMR methods for studying Li-mediated ammonia synthesis, and the direct observation of lithium plating and its concurrent corrosion, nitrogen splitting on lithium metal, and protonolysis of lithium nitride. Based on these insights, potential strategies to optimize the efficiencies and rates of Li-mediated ammonia synthesis are discussed. The goal is to demonstrate that operando NMR and EPR methods are powerful and general and can be applied for understanding the electrochemistry underpinning various applications.

An interactive Q&A session follows the presentation.

Evan Wenbo Zhao is a tenured assistant professor at the Magnetic Resonance Research Center at Radboud Universiteit Nijmegen in the Netherlands. His core research focuses on developing operando/in situ NMR methods for studying electrochemical storage and conversion chemistries, including redox flow batteries, electrochemical ammonia synthesis, carbon-dioxide reduction, and lignin oxidation. He has led projects funded by the Dutch Research Council Open Competition Program, Bruker Collaboration, Radboud-Glasgow Collaboration Grants, the Mitacs Globalink Research Award, and others. After receiving his BS from Nanyang Technological University, he completed a PhD in chemistry with Prof. Clifford Russell Bowers at the University of Florida. Evan’s postdoc was with Prof. Dame Clare Grey at the Yusuf Hamied Department of Chemistry at the University of Cambridge.

 

The post Operando NMR methods for redox flow batteries and ammonia synthesis appeared first on Physics World.